1. These barreled receivers are sold as is, with all faults and with no warranties, express or implied. CMP AND THE CORPORATION FOR THE PROMOTION OF RIFLE PRACTICE AND FIREARMS SAFETY MAKE NO WARRANTIES EXPRESS OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND SPECIFICALLY DISCLAIM ALL WARRANTIES OF ANY NATURE OR KIND WITH RESPECT TO THE PRODUCT.

2. Barreled receivers of any kind should not be assembled into operational rifles except by a competent gunsmith. The Purchaser of every used rifle should have the rifle examined by a competent gunsmith to determine whether the rifle is safe to shoot.

3. These barreled receivers in particular are sold as a collectors item only and are not intended for assembly into operational rifles by anyone.

4. Shooting an operational rifles assembled from these barreled receivers can be dangerous to a shooter’s life, limb and property, and may result in death or serious injury to the shooter or to bystanders or both.

5. The United States Navy converted some of these barreled receivers from 30-06 caliber to 7.62 x 51 by inserting a sleeve into the 30-06 chamber. NUMEROUS incidents of ejection of such sleeves with an ejected empty 7.62 x 51 case have been reported. Chambering a 7.62 x 51 round into a 30-06 chamber may create a dangerous and deadly situation in which hot gasses under high pressure may be blown back towards the shooter. Other dangerous conditions may result in death or injury to anyone shooting, or near the rifle when it is shot. Additionally, 7.62 rounds might double feed with the second round being projectile to primer of the first round.

6. Dangerous and deadly situations may occur when a round other than one specified for the chamber of firearm is fired in any firearm. The rifle itself could blow up and cause serious injury or death to a shooter or observer and could also result in property damage.

7. Some 7.62x51 ammunition may have been stored or manufactured improperly and when fired may result in higher than normal pressures which might exceed the pressures for which M1 Garands were designed.

8. Navy Garands with 7.62MM barrels have generally slightly longer chambers. The use of commercial .308 ammunition in such rifles is dangerous and may result in serious injury or death.

9. For all of the above reasons, anyone purchasing one of the 7.62 barreled receivers agrees that he/she will NOT assemble the receiver into an operable firearm.
REPORT OF EVALUATION ON NAVY
CONVERSION OF RIFLE, U.S. CAL. .30, MI
TO FIRE 7.62 MM AMMUNITION BY
MODIFICATION TO THE BARREL.

U.S. ARMY
WEAPONS COMMAND

SPRINGFIELD ARMORY
SPRINGFIELD, MASS.

30 OCTOBER 1964
SPRINGFIELD ARMORY
30 OCTOBER 1964

REPORT OF EVALUATION ON NAVY CONVERSION
OF RIFLE, U. S. CAL. .30, M1 TO FIRE 7.62MM
AMMUNITION BY MODIFICATION TO THE BARREL

Prepared By:

NICHOLAS J. ANGELICA

APPROVED:

CHIEF, ENG BR
RES & ENG DIV
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>II.</th>
<th>OBJECTIVE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.</td>
<td>CONCLUSIONS</td>
<td>1</td>
</tr>
<tr>
<td>IV.</td>
<td>RECOMMENDATIONS</td>
<td>2</td>
</tr>
<tr>
<td>V.</td>
<td>PROGRAM</td>
<td>2</td>
</tr>
<tr>
<td>VI.</td>
<td>DESIGN EVALUATION AND RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>VII.</td>
<td>KINEBATIC TEST PROCEDURE</td>
<td>6</td>
</tr>
<tr>
<td>VIII.</td>
<td>SUMMARY OF TEST RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>IX.</td>
<td>MODIFIED DESIGN AND ALTERNATIVE DESIGNS</td>
<td>10</td>
</tr>
<tr>
<td>X.</td>
<td>COMPARATIVE ANALYSIS OF M1 RIFLE BARREL WITH BUSHING VS NEW BARREL WITH 7.62MM CHAMBER</td>
<td>11</td>
</tr>
<tr>
<td>XI.</td>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>NAVY BUSHING DRAWING 2256892 REV B4 DATED 24 OCT 1963</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>MODIFIED DESIGN SA - A28552 AND ALTERNATIVE DESIGNS</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>SKETCHES, CHARTS AND PHOTOGRAPHS</td>
<td></td>
</tr>
</tbody>
</table>
I. OBJECTIVE

The primary purpose of this investigation was to evaluate and determine the feasibility and practicability of modifying rebuilt Rifle, U. S. Cal .30, M1 to fire 7.62MM ammunition utilizing a Navy design steel bushing assembled in the barrel chamber employing the Navy assembly procedure. This modification was primarily intended to be a simple and quick economical field conversion.

II. CONCLUSIONS

1. There is no positive method of assuring that the bushing will be retained in the barrel chamber during life of barrel.

2. The M1 Rifle converted to fire 7.62MM ammunition is considered unsafe for launching grenades because of excessively high bolt recoil velocities.

3. The M1E14 Rifle has a large muzzle flash. The use of a flash hider will eliminate flash; but addition of a flash hider will increase weight, cost and supply problems.

4. Results of limited firing tests conducted in connection with the study indicate that there will be a tendency for a greater frequency of feed type malfunctions than is normally associated with the M1 Rifle.

5. The M1E14 Rifle conversion is not considered to be a quick economical field conversion.
III. RECOMMENDATIONS

1. In the event of adoption of the M1E14 Rifle, it is recommended that the solid barrel with 7.62MM chamber be replaced instead of M1 Rifle barrels converted by means of a separate bushing to avoid potential unsafe conditions.

2. The M1E14 Rifle should not be used for grenade launching.

3. A flash hider should be used with the converted M1 Rifles.

4. A spacer similar to the Navy version of the Rifle, Cal .30 T35 version should be used with the converted rifle to aid in guiding the shorter 7.62MM cartridge into the chamber, and also prevent the loading of a clip filled with Cal .30 ammunition.

IV. PROGRAM

1. As directed by Headquarters AMC during a 3 June 1964 meeting at Springfield Armory, a program was outlined to evaluate the Navy conversion of rebuilt M1 Rifles to fire 7.62MM ammunition by assembly of a Navy Bushing, Drawing 2256892, Rev B4, dated Oct 24, 1963 (see Appendix A) into an M1 Rifle barrel chamber.

2. On 13 August 1964, Springfield Armory was funded and authorized to proceed with the program. During an 8 October 1964 meeting relative to reviewing the status of the program at Springfield Armory, representatives from Headquarters AMC and AMC requested the Armory complete and submit a report including conclusions and recommendations on certain phases of the original program. These phases pertained to engineering studies, kinematic tests and preparation of a suitable bushing design including refinements based on results of engineering study.
V. DESIGN EVALUATION AND RESULTS

1. The design evaluation described in the above program is outlined and the results summarized as follows:

a. Review of M1 Rifle barrel drawings to identify design changes released during mass production, for effect on bushing retention.

A review was made of M1 Rifle drawings used in connection with production of M1 barrel. Two chamber requirements affecting pre-1942 manufactured barrels at the front neck diameter and location of second shoulder were found which could significantly affect assembleability of bushing. These dimensions are shown in sketch number 2.

b. Review of all barrel deviations authorized for effect on retention of the bushing.

A review of authorized deviations relative to M1 barrel chamber dimensional requirements indicated that the deviations would not adversely affect assembleability and retention of the bushing in barrel chamber.

c. Conduct dimensional studies of the interrelationship between the M1 Rifle bolt assembly, headspace condition, 7.62MM cartridge case and the bushing in the M1 Rifle barrel chamber.

(1) Study showed that there can be a resultant diametral interference of .008 inch between the chamber body and the mating surface of the 7.62MM cartridge case as shown in Sketch Number 3. This would necessitate modification to M1 Rifle barrel chamber body to eliminate cartridge case interference.
Headquarters AWC authorized the Armory during early phase of the program to design a special reamer to remove the interference after the bushing was seated by firing two M80 Ball rounds.

(2) The Navy drawing 2256892 Rev B4, dated 24 Oct 1963, required phosphate coating of the bushing. This would affect retention of bushing in barrel chamber, since the coefficient of friction between phosphated surfaces and steel is less than that of steel on steel. The bushing should be free of any protective finish.

Note: Midway through the program the phosphate coating requirement was deleted.

(3) The fit between the bushing diameter and mating barrel chamber diameter (Sketch Number 4) and the front neck can result in an interference of .0015 with current barrel requirements and .0019 with pre-1942 barrel requirements. An interference can result at the second shoulder of the barrel involving length A, Sketch No. 2. This study takes into consideration the resultant shortening of dimensions based on extremes of tolerances relative to receiver, barrel and bolt, with barrel shoulder crush and maximum stock removed from the first shoulder of the barrel during the headspacing operation of the rebuilt M1 Rifle. Sketch Number 5 illustrates that the front portion of the bushing can strike the second shoulder of the chamber and prevent the bushing from seating because of a .0015 interference (current barrel design) to .0105

NOTE: Sketch Number 1 illustrates barrel chamber nomenclature used throughout this report.
interference (pre-1942 barrel design).

(4) The 34° angle on bushing is different than the 34° 26' angle at second shoulder of barrel (Sketch Number 6). An interference will result between the .130R maximum of bushing and a permissible sharp corner at the second shoulder (Sketch Number 7). The above conditions adversely affect bushing assembleability or retention.

(5) With the bushing assembled in the barrel there may be a resultant maximum free run of bullet of .5177 inch in bullet seat area prior to engraving by the rifling (See Sketch Number 8). The maximum free travel of bullet in M1 Rifle is .065 inch. Because of length of bullet free run, greater than normal gas leakage will result in large muzzle flash. Excessive flash was observed during kinematic tests explained later in report. Gas leakage will probably accelerate erosion in bullet seat area in both original barrel and the softer bushing material. This may wear away the bushing material, affect holding force of bushing, and result in loosening or complete loss of the bushing from chamber. The bushing material does not have the erosion resisting qualities of the original barrel material. A loose bushing in barrel will disable the weapon. Complete loss of bushing can result in double feeding, one live round into another.

d. Study the dimensional relationship of eight round cartridge clip and the M1 Rifle receiver when using 7.62MM ammunition, including the review of all deviations on both receiver and clip.

(1) There are no deviations on record for either the M1 Rifle receiver or the eight round cartridge clip that would adversely
affect entry of a clip loaded with 7.62MM cartridge into the receiver.

(2) Sketch Number 9 shows the minimum clearance between a cartridge clip loaded with Cal .30 ammunition, inserted into the receiver as compared to a cartridge clip loaded with 7.62MM ammunition. The .0035 minimum clearance that may result in certain weapons with a cartridge clip filled with 7.62MM ammunition may be marginal, especially when the rifle is exposed to dust and dirt.

e. Evaluation of Navy Bushing fit in barrel.

(1) The Navy Bushing design under all conditions would not provide necessary plastic yielding of material to insure permanent assembly in barrel chamber.

(2) The minimum clearance between barrel and bushing must be sufficient so that yield of bushing beyond limit will provide plastic flow to conform to barrel chamber configuration with residual stress to result in sufficient pressure interference fit for retention of bushing.

f. Non-destructive examination of barrels in converted rifles.

In all converted test rifles in which an interference condition in first shoulder area was eliminated, X-Ray examination showed the bushings were fully seated in barrel chamber.

VI. KINEMATIC TEST PROCEDURE

1. Eight M1 Rifles selected at random that passed rebuild requirements were function fired 100 rounds each. Four rifles were then
used to obtain kinematic test data as follows:

a. Projectile velocity at 78 feet from muzzle.
b. Pressure readings inside gas cylinder.
c. Time-displacement curves using ball ammunition.
d. Time-displacement curves using cartridge, Cal .30, M3 Grenade, Rifle, and Grenade, Rifle Practice, M31 (inert).

2. The above eight rifles were converted to M1E14 configuration using the Navy design bushing except that the bushings were free of phosphate coating as follows:

a. Thoroughly clean chamber with trichloroethylene.
b. Eliminate sharp corner in first shoulder area of chamber of all rifles, using a special design reamer.

Note: This operation eliminated the interference as shown in sketch number 7 and was not included in original procedure.

c. Re-clean chamber thoroughly with trichloroethylene.
d. Insert bushing and M80 Ball round into breech, chamber, lock action and fire round. Feed a second round of M80 Ball into chamber and fire.

Note: It was necessary to hand charge the action a number of times on majority of rifles to seat the bushing and M80 Ball round in chamber. This was primarily due to interference of 7.62mm cartridge case in M1 Rifle chamber body as shown in sketch number 3.

e. After seating of the bushing, the M1 Rifle barrel chamber body configuration was re-shaped to accommodate the 7.62mm
cartridge by using another special design reamer. This also was not in the original procedure but was found necessary to preclude inordinate hand charging during subsequent testing. Excessive hand charging introduced a possible safety hazard. The reamed area of chamber body was polished to insure ease of cartridge extraction.

f. The gas port hole diameters (.0790 + .0015) of the eight M1 Rifle barrels were enlarged to .0995 diameter on four barrels and .1065 diameter on four barrels. The eight converted rifles were then function fired 100 rounds each without utilizing a spacer.

g. Two rifles each with above barrel port diameters were selected and re-tested in accordance with par i.

h. Still photographs were taken to record resultant flash on test weapons without and with a T-37 Hider, Flash.

VII. SUMMARY OF TEST RESULTS

1. The eight rifles were fired a total of 3100 rounds after conversion. Once the bushings were seated, there were no bushing extractions.

2. Headspace measurements of the eight M1 Rifles prior to conversion were within M1 Rifle rebuild requirements.

3. Headspace measurements of seven out of eight converted rifles were up to .0055 inch under the 1.6355 minimum headspace requirement for the M14 Rifle. This may cause difficulty in locking the Bolt in converted rifles.

4. Kinematic data and pressure readings (inside as cylinder)
are tabulated in Chart I, II and III.

a. The peak pressures taken inside the gas cylinder and the bolt recoil velocities are lower in the converted MLE14 rifles than in M1 rebuild rifles. MLE14 rifles having the .1065 inch barrel port diameter more closely approximate the power of the M1 rebuild rifle.

b. Instrumental projectile velocities are tabulated in Chart II. Round to round variation in projectile velocities in the MLE14 rifle is greater than that recorded on rebuilt M1 Rifles, and muzzle velocities were higher in the MLE14 Rifle.

c. Data on Grenade Launcher tests are tabulated in Chart III. Bolt opening velocities were dangerously high on the converted rifles. On two rifles, the bolt recoiled violently enough to strike rear of Receiver and bounce back into battery. This condition occurred in rifles having barrels with port-hole diameters of either .0995 or .1065 inches.

5. Malfunction data are tabulated in Chart IV. There was an indication that feed type failures would be greater than the M1 Rifle.

6. Muzzle flash on the converted MLE14 Rifle was considered excessive using ball ammunition. A Rider, Flash (T37) designed for use with the M1C and M1D Snipers Rifle was used in an effort to suppress flash. The T-37 Flash Hider eliminated this flash as shown in photographs taken during firing of single shots (see Appendix C).
VIII. MODIFIED DESIGN

1. A modified bushing design and M1 Rifle barrel chamber configuration including an assembly procedure are shown on Sketch SA A28552 dated 30 Oct 64, sheets 1 through 5 (Appendix B).

2. Also included are two additional concepts as shown in alternative designs, Numbers 1 and 2 which would provide greater assurance of bushing retention in barrel chamber. These designs are considered more costly for manufacture.

3. It should be recognized that further effort to design, test and evaluate the above designs will be required before any decision on adoption.
IX
COMPARATIVE ANALYSIS OF M1 RIFLE BARREL WITH BUSHING VS NEW BARREL WITH 7.62MM CHAMBER

<table>
<thead>
<tr>
<th>BARREL WITH BUSHING</th>
<th>NEW BARREL WITH 7.62MM CHAMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Life questionable.</td>
<td>2. Barrel life should be equal to M1 Barrel.</td>
</tr>
<tr>
<td>3. Poorer accuracy, especially at longer ranges.</td>
<td>3. Accuracy equal to that of M1 Rifle.</td>
</tr>
<tr>
<td>4. No economical means of inspection of bushing in barrel. No positive assurance bushing will remain in chamber.</td>
<td>4. No problem.</td>
</tr>
<tr>
<td>5. Free run of bullet approximately 9 times that of M1 or M14 barrels.</td>
<td>5. Free run controlled to minimum by barrel design.</td>
</tr>
<tr>
<td>6. Bushing may become loose presenting a safety hazard.</td>
<td>6. No hazard.</td>
</tr>
<tr>
<td>7. Barrel bullet seat erosion accelerated.</td>
<td>7. Erosion should be comparable to that experienced in the M1 barrel.</td>
</tr>
<tr>
<td>8. Muzzle flash greater due to greater gas leakage.</td>
<td>8. Flash will be less due to control of free run of bullet.</td>
</tr>
<tr>
<td>9. 7.62MM M80 Ball ammunition not designed for compatibility with M1 Rifle rifling twist.</td>
<td>9. Barrel can be manufactured with 1 turn in 12 inches rifling twist.</td>
</tr>
<tr>
<td>11. Possibility of damaging or removal of bushing by use of a ruptured cartridge extractor and chamber cleaning equipment.</td>
<td>11. No problem.</td>
</tr>
</tbody>
</table>
Appendix B

Sharp Edge

.924 ± .001

.440 Dia -.002

.013 Incl TPI Ref

.3418 Dia + .0010

.005 Incl TPI

.005 Dia -.001

.3305 Dia -.002 C

40.0

34.26

.451 Dia .-002

.005 Incl TPI

.002 R Max

.035 R + .010

90° ± 2°

Break Edges .005 + .005

.125 R + .005

.400

.002

.481 + .005

32

All Over

Tolerance on

Angles ± 0°15'

Unless otherwise Spec.

angular surfaces and all diags

To be concentric with .311 Dia

w/in .0005 T.I.R.

Bushing

SA-A28552 3.0.41
PROCESSING PROCEDURE OF MIE14 CONVERSION

1. REMOVE BARREL AND RECEIVER ASSEMBLY.
2. REMOVE BOLT FROM RECEIVER.
3. REAM CHAMBER TO NEW DIMENSIONS (.013 INCL TPI BODY TAPER, 1.955 SHOULDER DEPTH, .450 SHOULDER DIAMETER) USING SPECIAL REAMER.
4. CLEAN CHAMBER.
5. CLEAN BUSHING.
6. RE-ASSEMBLE BOLT IN RECEIVER.
7. RE-ASSEMBLE ENTIRE WEAPON.
8. INSERT PROOF ROUND (7.62MM) IN BUSHING.
9. INSERT BUSHING WITH PROOF ROUND IN CHAMBER.
10. CLOSE BOLT MAKING SURE LOCKING LUGS ARE ENGAGED IN LOCKING SURFACES OF RECEIVER.
11. FIRE PROOF ROUND TO SEAT BUSHING.
12. USING PILOTED AND ADJUSTABLE REAMER, FINISH HEAD SPACE AND CLEAN BODY.
13. CLEAN CHAMBER.
14. CHECK FOR HEADSPACE REQUIREMENT.
15. FUNCTION FIRE 16 ROUNDS.
ALTERNATIVE BUSHING DESIGN #1

APPENDIX B
ALTERNATIVE BUSHING DESIGN #2

APPENDIX B

FINE THREAD

30 OCT 64
1. MI BARREL CHAMBER NOMENCLATURE

<table>
<thead>
<tr>
<th>Dim.</th>
<th>Current</th>
<th>Pre 1942</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.850 + .0060</td>
<td>1.840 + .004</td>
</tr>
<tr>
<td>B</td>
<td>.3405 + .0015</td>
<td>.3401 + .0015</td>
</tr>
</tbody>
</table>

REF SKETCH 4&5

2. COMPARISON OF CURRENT & PRE 1942 CHAMBER DIMS

APPENDIX C SKETCHES

30 OCT 64
3

Cartridge Interference in Chamber

Diametral interference of .008 between 7.62mm cartridge & M1 barrel chamber body.
4. Bushing .342 Dia Max
 Interference at Neck
 Ref Sketch #2

5. Bushing .552
 Current Chamber .5505
 Pre 1942 Chamber .5415
 Interference at 2nd Shoulder 30 Oct 60

6. Difference in Angle of First Shoulder

7. Bushing
 Permissible Sharp Corner
 App: Radius V Sharp Corner
 Sketches 20 Oct 60
MAX BULLET FREE RUN

MI RECEIVER

CARTRIDGE CLIP

7.62 CARTRIDGE

-.0035 (RES.) MIN CLEARANCE

MI BARREL CHAMBER

BUSHING

7.62 MM CART.

.5177 MAX FREE RUN

MINIMUM CLEARANCE IN MI RECEIVER WHEN 8 ROUND CLIP IS LOADED WITH CAL. 30 AMMUNITION AND WHEN LOADED WITH 7.62 MM AMMUNITION

APPENDIX C SKETCHES 30 OCT 64
APPENDIX C

CHART I

Kinematic and Pressure Data (Avg of 10 Readings / Each Rifle)

<table>
<thead>
<tr>
<th>Rifle Type</th>
<th>U.S. Cal.30, M1</th>
<th>7.62mm, M1E14 (Conversion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammunition</td>
<td>Cal.30, M2 Ball Lot RA 43153</td>
<td>Cal 7.62mm, M80 Ball Lot WRA 22075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rifle No.</th>
<th>Bolt Opening</th>
<th>Bolt Vel, End of Recoil</th>
<th>Peak Gas Cylinder Pressure</th>
<th>Bolt Opening</th>
<th>Bolt Vel, End of Recoil</th>
<th>Peak Pressure in Gas Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2630715</td>
<td>24.8</td>
<td>12.5</td>
<td>1930</td>
<td>24.9</td>
<td>1810 **</td>
</tr>
<tr>
<td>2</td>
<td>3211416</td>
<td>27.7</td>
<td>19.8</td>
<td>2370</td>
<td>26.8</td>
<td>2090 **</td>
</tr>
<tr>
<td>3</td>
<td>2287011</td>
<td>27.4</td>
<td>20.7</td>
<td>2100</td>
<td>26.3</td>
<td>1960 *</td>
</tr>
<tr>
<td>4</td>
<td>2501369</td>
<td>25.2</td>
<td>13.4</td>
<td>1980</td>
<td>23.9</td>
<td>1650 *</td>
</tr>
</tbody>
</table>

* .0995 Port Hole
** .1065 Port Hole
S.R. - Short Recoil
APPENDIX C

CHART II

INSTRUMENTAL PROJECTILE VELOCITIES (Avg of 10 Readings / Each Rifle)

<table>
<thead>
<tr>
<th>Rifle Type</th>
<th>U.S. Cal.30, M1</th>
<th>7.62 mm, M1E14 (Conversion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammunition</td>
<td>Cal.30, M2 Ball Lot RA 43153</td>
<td>Cal 7.62 mm, M80 Ball Lot WRA 22075</td>
</tr>
<tr>
<td>Rifle No.</td>
<td>Avg Vel at 78 ft/Sec</td>
<td>Extremes Variation, ft/sec</td>
</tr>
<tr>
<td>1</td>
<td>2501369</td>
<td>2604</td>
</tr>
<tr>
<td>2</td>
<td>2287011</td>
<td>2632</td>
</tr>
<tr>
<td>3</td>
<td>2630715</td>
<td>2612</td>
</tr>
<tr>
<td>4</td>
<td>3211416</td>
<td>2618</td>
</tr>
</tbody>
</table>
APPENDIX C

CHART III

Kinematic Data for Grenade Firing (Avg of 5 Readings / Each Rifle)

<table>
<thead>
<tr>
<th>Rifle Type</th>
<th>U.S. CAL.30, M1</th>
<th>7.62MM, M1E14 (Conversion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammunition</td>
<td>CARTRIDGE, GRENADE - M3</td>
<td>CARTRIDGE, GRENADE - M64</td>
</tr>
<tr>
<td></td>
<td>LOT LC 12201 (.30 cal)</td>
<td>LOT FA 4 (7.62 MM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rifle No.</th>
<th>Length of Bolt Recoil - Inches</th>
<th>Bolt Velocity at End of Recoil - FT/Sec.</th>
<th>Length of Bolt Recoil - Inches</th>
<th>Bolt Velocity at End of Recoil - FT/Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.24</td>
<td>Not recorded (Only Partial Recoil)</td>
<td>Full</td>
<td>35.50</td>
</tr>
<tr>
<td>2</td>
<td>1.82</td>
<td>**</td>
<td>Full</td>
<td>15.10</td>
</tr>
<tr>
<td>3</td>
<td>1.80</td>
<td>**</td>
<td>Full</td>
<td>37.80</td>
</tr>
<tr>
<td>4</td>
<td>1.46</td>
<td>**</td>
<td>Full</td>
<td>12.50</td>
</tr>
</tbody>
</table>

* .0995 Port Hole.
** .1065 Port Hole.
Appendix C
Chart IV

Function Data

<table>
<thead>
<tr>
<th>Rifle Type</th>
<th>Ammunition</th>
<th>7.62 mm, MIE14 (Conversion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Cal.30, M1</td>
<td>Cal.30, M2 Ball Lot RA 43153</td>
<td>Cal 7.62 mm, M80 Ball Lot WRA 22075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rifle No.</th>
<th>Malfunctions Per 100 RDS - Standard Port Hole</th>
<th>Malfunctions Per 100 RDS - .0995 Port Hole</th>
<th>Malfunctions Per 100 RDS - .1065 Port Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[250]1369 1-FF</td>
<td>2-FF</td>
<td>No Malfunctions</td>
</tr>
<tr>
<td>2</td>
<td>2630715 No Malfunctions</td>
<td></td>
<td>No Malfunctions</td>
</tr>
<tr>
<td>3</td>
<td>2033164 No Malfunctions</td>
<td></td>
<td>No Malfunctions</td>
</tr>
<tr>
<td>4</td>
<td>4728502 1-UR</td>
<td>1-BFR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6090632 No Malfunctions</td>
<td></td>
<td>No Malfunctions</td>
</tr>
<tr>
<td>6</td>
<td>847867 No Malfunctions</td>
<td></td>
<td>No Malfunctions</td>
</tr>
<tr>
<td>7</td>
<td>2297011 No Malfunctions</td>
<td>1-Fx ([Broken Extractor])</td>
<td>1-UR</td>
</tr>
<tr>
<td>8</td>
<td>3211416 No Malfunctions</td>
<td></td>
<td>1-Fx ([Sheared Rim])</td>
</tr>
</tbody>
</table>

Legend:
- **FF**: Failure to Feed, Bolt Closed on Empty Chamber
- **FX**: Failure to Extract
- **BFR**: Bolt Failed to Remain Open, Clip Failed to Eject
- **RS**: Round Stud